Appendices

APPENDIX A-

Advanced SOA Features

Introduction

SOA has proven challenging because designs must not just satisfy all the capabilities
from previous design evolutions (e.g., transactions, sessions, and units of work), but
must address a host of new capabilities directly related to SOA: emergence,
contracts, cohesion, conjunctiveness, etc.

Today SOA

Component‘A

(O\N‘“ _

G 7 s oy |y T
039.3 is r|u e § s é

Component“B”

Dynamic Architecture

0
80s - ['
Interactive] Capabilities,
70s I— Emergence and Conjunctive

Online Composition Capabilities

@ ﬁ Distributed Applications,

[—.\ Objects, Interfaces
[= Layers/Tiers, Workflow, Session

= Transactions, Unit of Work, Events
Data Separated from Program, Structure

FIGURE A-1
SOA builds upon all previous architecture evolutions and adds unique features

The Army’s operational tempo as exemplified by the Future Combat System requires
a dynamic but secure integration of disparate services in both planned and unplanned
ways. To accomplish this requires:

o Dynamic Architecture Features. These features permit an architecture to be
established during execution.

o Conjunctive Composition Features. These features enable conjunctive
(emergent) compositions, that is SOAs should be designed to provide the ability
to use or combine services in ways not conceived by the service’s originators.

Page A-1

TABLE A-1. Features Necessary to Enable Dynamic Architectures

Dynamic Architecture Features

SOA should deliver services that are a result of dynamic and not static architectures.
Traditional architectures are static with component compositions determined at
design time. Advanced SOA architectures are dynamic with component
compositions necessary to satisfy specific functions or processes determined during

execution.

A component is usually a piece of software that has an API and a set of operations on
the API that successfully implement a service interface operation. A service, as
specified by a service operation, is independent of implementation. A component is
best defined in a SOA if it can be autonomously defined and deployed, and relates
well to some object in the business.

Dynamic architectures occur when the resolution of what service and component is to
be used to contribute to the satisfaction of some business event occurs during system
execution as opposed to being pre-designed and statically defined during design or
assembly. Traditional systems designs are inherently static in that, minimally, the
interface definition used between one component and another is defined during
design and is well typed (example: RPC based systems, CORBA Based systems,
Internet systems where the I[P Address and port of the server is hard coded, or any
kind of one-tier or two-tier application).

The value of SOA is the selection of the best possible execution plan, therefore
dynamic architectures are required which, in turn, necessitates a specific set of
features to be enabled, which are included in the following table:

BRI (REEEE Examples of How
Feature Description Dynamic Enabled
Architecture
Late binding Service collaborations resolve which | Because the choice of which | Usage of Service Proxies to resolve the

components will be used to satisfy a
service request as late as possible during
execution. It is the result of

+ Selecting a service by specifying a
service interface that satisfies the
consumer need as late as possible
during execution and then,

* Resolving the interface to a specific
component and the component API that
best satisfies the service interface
signature also as late as possible.

Each binding should be considered a

configuration that can change dynamically

as needed without loss of correctness and
be consistently applied regardless of the
enabling environment.

service, which operation, and
which enabling component
should oceur during
execution.

connection of one service to another.
Initially ~ these proxies may use
configuration files to pass the fully
resolved location of a service. However
as an Enterprise Service Bus (ESB) is
implemented, the proxies may be
changed to call one or more registries
managed by the ESB.

Page A-2

Why Related to

Examples of How

Feature Description Dynamic
- Enabled
Architecture
Loose coupling | The low degree of mutual | Because hard-coded | * Usage of Data adapters to access the

interdependence between components

enabled in a SOA. Itis the result of

+ Rigorous encapsulation of data around
components implementing services

* No foreign keys existing between
service domains

+ Application specific metadata being
applied to the service during execution

» Stateless execution contexts

+ Self-description of message contents

+ Moving away from synchronous, RPC-

like messages to asynchronous
messages.

It also means that the enabling
components are autonomously

deployable and have minimal to no
shared data.

relationships limit late binding
and autonomy.

data (encapsulation)

+ Usage of SOAP-based messages to
encapsulate protocol implementations
(Semantic data independence)

* Generalized Metadata repositories
used to integrate information together
semantically

Discrete
functions

The specification of each method of a
component is independent of all other
methods. It results from designing, or
confirming that COTS products contain,
component methods, APls, and the
corresponding service interfaces that are
autonomous and independent, do not
presume any application context, and are
stateless between invocations. The
primary success measure is to be able to
use each method in many scenarios with
minimal preconditions.

Note that a method is a specification that
ultimately results in the definition of an
operation on an interface. You can think
of a method as the specification for a
service interface, whereas the operation
is the specification of the operation
enabled by an API that uses a specific
port number that corresponds to a type of
interface. This allows for late binding of
the specific operation being used to
satisfy a specific service method.

So you can add context-
specific information at
execution time. You use a
combination of late-binding

meta data and
implementation selection
rules to limit the number of
deployed implementations
and improve context
sensitivity.

* Implementation planning at the
Interface (operation) level. This means
that the primary output of a delivery
(e.g. of a Sprint 30 day delivery cycle)
is operations to be enabled. All the
other “plumbing” is encapsulated and
facaded under the interface

Each operation is autonomous,
therefore can (1) registered by a
Service Registry, (2) have its own
evolution plan

Page A-3

Feature

Description

Why Related to
Dynamic
Architecture

Examples of How
Enabled

Service
Discovery

This is a process of querying, browsing,
offering, and selecting specific instances
of operations on interfaces (services) to
satisfy a specific request. It is the result
of using an interface registry to provide
the ability to automatically identify
hardware or software services and then
bind to them to perform some necessary
piece of work. In its simplest form of
service discovery is the result of using a
configuration file that removes any hard
coded relationships between components.
In its most advanced form it means
registering ontology of characteristics that
can be queried to determine whether a
specific operation on a specific interface
will satisfy a specific need. The primary
success measure is
* To never statically define the
association between components in
code, but rather resolve what specific
component(s) are to be invoked
» To provide a service by dynamically
determining what interface is to be used
and then invoking an enabling
component through a selected API.

Because if you do all the
above, you now need a way
of discovering the best
possible service, operation,
and discrete function
(component) to use.

In the short term, Service Proxies to
configuration files/databases can be
used. Long term, proxies can enable
“behavioral browsing” of the service
registry to assure that the best possible
fit for an operational need is satisfied with
the most correct interface(operation)

Autonomous
deployment

This is the ability to deploy components
and interfaces into production with
minimal constraints on how, when, or how
often the deployment occurs.

It is the result of using loose coupling,
late binding, discrete functions, and
service discovery to enable components
to have minimal to no prerequisite
external or fixed dependencies. If
services are statically bound to specific
components, then fixed dependencies
exist. If components are packaged into
static products, then other fixed
dependencies exist. And if components
have mandatory and prerequisite
associations ~ with other tools or
components, then yet more kinds of fixed
dependencies exist. Fixed dependencies
reduce, or even eliminate autonomous
deployment and the ability to form
dynamic applications.

Autonomous deployment
allows services to be added
continuously by different
service providers. Services
can be selected as late a
practical during execution
instead of the previously
deployed services because
the selection of a service in a
dynamic architecture s
based upon a set of
conditions instead of specific
implemented service.

Usage of Service Delegates, Facades,
and Proxies to preserves the
independence of the Interface (operation)
while at the same time enabling Services
with Open-Source and COTS solutions.

Page A-4

Feature

Description

Why Related to
Dynamic
Architecture

Examples of How
Enabled

Message-Based

Integration

This is the usage of event-generated
messages from autonomous components
to dynamically form application contexts.
As opposed to statically defined
applications that have fixed application
contexts and fore-knowledge of what
each component of the application does,
message-based integration relies on the
messages to provide application context.
For messages to provide application
context event brokers must be used to
generate and type events, taxonomies
and semantics must be portable and not
based upon a single shared database,
channels for routing messages from
consumers to providers must extend
across the COIl, dispatching and
translation must occur from one
environment and domain combination to
others, and replicated service directories
within each environment/domain
combination must exist to qualify which
specific set of services should contribute
to a specific application context. In an
extended or inter-enterprise environment
federated service design plus an especial
emphasis on dispatching and translation
services is necessary to enable the
formation of dynamic applications across
enterprise boundaries.

Because this is how service
vectors are now constructed.
Besides, it's necessary for
autonomous deployment.

» Standard SOAP based message
formats for the data packets being
passed from component to component.

+ Application of ontologies coupled to
role-based access to assure that the
right information is passed to the right
service to satisfy the information
request needs. This is important
because a piece or data (or a service
interface) can have different meanings
in different ontologies.
Usage of ‘deep crawling' of complex
document/record/transactional data to
create information indexes. Note that
deep crawling is a search concept key
to SOAs. It comes from deep crawling
of the internet in which a bot or crawler
examines not just the header
information of a document, but its
contents and, if allowed, the data in
databases. The result is a taxonomy
tree, and in some cases, an ontology.

Independent

and

implementation-

neutral

This means not associating a service with
a specific set of programming languages
or implementation platforms. However,
the characteristics of various enabling
environments and programming
languages require that the service, as
specified by a service contract specifying
an instance of a service interface, be
specific to all environments of a
Communities of Interest (COl). This
apparent contradiction means that

+ Specific environmental implementations
of interfaces and operations must exist
in all environments of the COI and,
Minimally, requests are routed to the
enabling environment of the component
that implements the service, or
maximally, the enabling component is
uniformly ~ implemented in all
environments of the COI.

Because you don't want to
limit from whom or where, or
with what the discrete
functions are provided.

Ensure that interfaces can be used in
relevant environments and securely
dispatched to all information enclaves.

Proactive and advance usage of
Security Assertions Markup Language
(SAML). SAML is a mechanism for
authentication and authority, its usage
with service based messages is the
mechanism by which trust of the
message is asserted. If you can't do
this, then identity implementations are
really-really tough.

Page A-5

Why Related to

Examples of How

Feature Description Dynamic
- Enabled
Architecture
Coarse grained | This is the design and selection of | Because to do otherwise | * Target Federated Enterprise

components enabling components to represent | floors the system and Architecture and Target Solution
classes of business entities as opposed to | destroys the registry. Architecture Lifecycle stages provide
specific instances, which results in better models of business components to be
alignment of the mission to the software enabled.
services. It also reduces dependencies » Where applicable, the product-centric
among participants and reduces nature of the business component
communications to fewer messages of definitions in our implementations
greater significance. should be preserved. A crude way of
saying that business components
should be autonomously deployable in
the same way that any product is
autonomously deployable.

« A distinction should be made between
sharable business components that
may be applicable to two or more
business-centric components (e.g.,
Identity Management is applicable to
Information Discovery and Portal
Services, equally). Two problems here:
Think of the Spell Checker embedded
in Microsoft office: (1) is it a coarse-
grained component that can be
installed independently of office, and
(2) how do we assure that is applicable
to Excel, Word, Access, and
PowerPoint? Is it trustworthy to use
the Office Spell-check in, say, IBM
Notes? The point here is that a coarse-
grained component may or may not be
designed to be incorporated into other
components during design or assembly
time as opposed to runtime through a
Service Registry (the stereotypical
approach to enabling service-ness).
Who authenticates and assures this
assembly

Dynamic This is the basis for forming processes | Because higher-level | Usage of Orchestration (BPEL) to enable
service and composite services. Dynamic service | services and all business]E)rocesses and Choreography (WS-CDL)
. collaborations will use either | processes are all | for composite services.
collaborations Orchestration (e.g., BPEL) to enable | collaborations constructed for
processes to satisfy scenarios or | the purpose of responding to
Choreography (e.g., WS-CDL) to | specific event types
coordinate the execution of composite
services.
Synchronous, All should be supported with an emphasis | Because a dynamic | Mediated, non-mediated synchronous
asynchronous, on asynchronous and publish-subscribe | architecture may require | and asynchronous messaging with
and publish- interactions, which are especially | different levels of service. uniform and common message bus
. important for the inter-enterprise and adapters and proxies.
isnLIth:;:?t)ens multiple information domains that

represent the Army environment.

Page A-6

Conjunctive Composition Features

SOA should deliver services that are a result of conjunctive composition. That is,
SOAs should be designed to provide the ability to use or combine services in ways
not conceived by the service’s originators. Conjunctiveness is achieved by applying
late-binding and application specific metadata to the service. Key aspects of
conjunctiveness are (1) services interact with each other with minimal preconditions,
and (2) they can evolve to meet specific needs without jeopardizing existing
application contexts. Table A-2 includes specific features that enable
conjunctiveness.

TABLE A-2. SOA Features Enabling Conjunctiveness

Feature

Description

Examples of How
Enabled

Service contracts

Detailed specification of actions to be performed and data to
be provided by service providers for specific types of service
consumers. Service contracts should have very detailed
signatures, resolve the association between a community of
interest and a particular service interface given the application
context of the late binding service request. SOA changes the
power equation of systems delivery because consumers of
services can reject binding to a particular instance of a service
in favor of a competing service instance if the it'is not correct.
Therefore, service contracts represent the basis for finding and
then delivering a service that fits'.

Metadata defined application contexts
represented by model for information
collection and COI specification.

Dynamic Process

Formation

Processes are created as dynamic service collaborations
(above) that result in time-dependent sequences that satisfy
specific transformational objectives.

Dynamic (temporal and event driven) as
well as pre-defined process support via
metadata description,

Composite services

Functions are enabled as composite services that are
associations of services in a stateless and peer-to-peer
collaboration to satisfy a capability-based set of services (e.g.,
a collaboration service is really a dynamic collaboration of a
virtual space, chat, log, presentation, and other lower-level
services).

Best-practice formation of services to
deliver IDP-specified capabilities

Application-neutral
design

Means that service should not be designed to presume a
specific application context. A real example of this comes from
a manufacturing company that had a common shopping cart
site. The problem was (is) that each product line had its own
pricing calculator. The application context was embedded.
This made it very difficult to implement company wide policies.
This company should have designed a single, application-
neutral calculator and, using metadata, bound the application
context based upon the instance of usage.

Usage of Facades, Delegates, Factories,
and Containers; Interface Facades
brokers.

Consumer must be expressed using a consistent metadata
model, and provider offerings should be expressed using an
equally consistent metadata model.

Session objects of metadata. Ontologies
registered in service registry, Metadata
usable by all services.

Consumer and
Provider Metadata
Concurrently
developed

Service interfaces and components are developed and
deployed without preconditions. This reinforces the need for
independent and discoverable services and application neutral
design techniques.

Value-drive and feature based SPRINT
planning with concurrent execution.

Page A-7

Feature

Description

Examples of How
Enabled

Interoperable across
a heterogeneous
environment

Results from managing identity, method exchange, event

preservation, and syntactical and semantical data exchanges.

The objective is for two or more components to not only

exchange and use data but to discover and then accept/post

operational requests to components irrespective of how or

where the components are enabled. This requires across the

domains of a COI:

* |dentity management
instances.

« Platform-neutral formats for data, method, and events.

+ Exchanges and method posting/acceptance must exist
across the network addressable space. and

» Community of interest specifications controlling access to
interoperable services.

of components and executing

Usage of Service Proxies, Adapters,
Dispatching Services between enclaves,
SAML-based entitlement and attribute
access; dynamic and static COls.

Reusable artifacts

Whereas autonomy is a measure of dependencies, reuse is a
measure of shared elements. The minimal requirement for
SOA is interface reuse where a service interface’s signature
can enable numerous components. The interface is reused
with the service contract specifying the basis for choosing one
component over another.

Support for design time reuse (e.g.,
shared library of source and linkable
objects as well as runtime reuse by the
delivery of autonomous services.

Network
addressability

Means anyone, or any component, that is anywhere in the
network addressable space should be able to participate in a
service collaboration — given appropriate security constraints.
By using Web Services-based standards the network
addressable space is extended to the entire Web

Federated and replicated registries
across domains; Dispatch services;
Proxies for cross domain services
access.

Page A-8

APPENDIX B —

Advanced SOA Delivery Tactics

Introduction

This appendix describes various techniques and delivery tactics. The objective of
this appendix is to describe advanced aspects of SOA based delivery and its impact

on the methodology.

SOA Software Engineering

SOA Software Engineering is, out of necessity, different from traditional software
engineering because the Dynamic and Conjunctive features (Appendix A) of a well
formed SOA requires that different approaches be used to assure that the Technical
Performance Measures (TPMs) for each feature have been achieved and enabled.
Consequently, the software engineering process has to be especially tuned for
successful SOA delivery. Unlike traditional top-down and incremental software
engineering, engineering for a SOA is iterative, continuous, requires additional views
of the architecture, and places an extra burden on the governance process. These
differences have been summarized in the table, below.

TABLE B-1. Comparison of Traditional and SOA Software Engineering

Method Traditional SOA
Software Software
Factor Engineering Engineering Comments
Delivery Self-contained program-based | Marketplace based delivery. The primary driver of traditional

Self-contained programs

sharing.

delivery (e.g., program silos). | Small deliveries organized around

with | groups of services enabled by

point-to-point interfaces to other | autonomously delivered
programs; minimal cross-program | components with the expectation

of reuse in multiple problem
contexts.

software engineering is deliver an
autonomous system with little or no
expectaton ~ where all the
components and data are tightly
bound to the program delivery
specifications. The driver for SOA
software engineering is deliver
reusable services into various
problem domains.

Page B -1

Method Traditional SOA
Software Software
Factor Engineering Engineering Comments
Delivery Traditional ~ Program Team | Associative and adaptive | New Skills--

Organizations

structure (e.g., pre-allocate all
resources to specific task orders
at beginning at project)

Traditional Roles (e.g., developer,
coder, architect, project manager,
etc.)

structures (e.g., pulling resources
from a pool and continuously
allocating and reallocating them to
the needs of a specific delivery.)

Uses similar roles, but developers
and coders must now
accommodate the need for the
assembly of pre-existing services
and delivery of new services.
Also, data architects / developers
have to accommodate the need
for payload design (i.e., the
design of the interface operation’s
signature) and the segmentation
of the data to accommodate
service delivery.

» Creation of individual services

* Orchestration of services into
business processes

o Assembly of services
composite applications

« For the same components and/or
services the management of

into

overlapping requirements,
development, delivery, and
support.

Methodologies Structured Analysis & Design * OOAD or Model Driven | « Itis actually very hard to do a SOA
Object Oriented Analysis and Architecture (MDA) with Structured Analysis and
Design (OOAD) can be used if methodology is desired and Design because design is not just
desired improves the results top-down, and data and process
« Feature Driven Development (or | need to be designed together.
Similar)
Software Waterfall, Incremental, or | * Agile Alliance * Service Components can
Development Prototype based + SCRUM, or ;:ontinuoutslly; evolve. Iteratitye (not
i « Crystal based ncremental), continuous,
L v evolutionary
Software Structured Decomposition « Need additional views and more | « SOAs demand additional views;
Architecture Data Flow Diagram (DFD) based formal associations between the | interface, ~ component, and
Engineering views that show how different deployment views are necessary.
aspects interact with one
another.

Page B -2

Method Traditional SOA
Software Software
Factor Engineering Engineering Comments
Integration Point-to-Point + Dynamic and Static Interfaces
» Discovery Mechanisms
Verification & | * Assumes a well-established | « Iterative addition of detail + SOA components are never

Validation

requirement base that s
traceable and transformed from
the start of a project/program all
the way to the end.

Assumes deterministic
computing (e.g., predefined
relationships between artifacts
established at design time).

Requirements don't have to be
‘done’ to start fielding solutions.
Verification is the traceability of
one or more requirements to an
enabled feature. Much more
granular ~ than traditional
software engineering.
Non-deterministic (e.q.,
relationship between artifacts is
1) not completely known until a
particular event occurs during
execution and 2) can change
over time).

Orthogonal ~ Array Testing
Strategy (OATS) helps identify
the important service-service
interactions and derive a
minimal set of test cases.

Need to test initial delivery of
services and test again when
they are applied in different
problem contexts.

“finished, therefore verification is
also iterative.

Especial attention must be paid to
testing for “unknown” customers;
that is, those users of a service
‘sometime later’ that are not known
at the time of initial service
delivery.

Reuse of a service requires the
publication ~and usage of
certification suites to confirm that
the reused service behaves
consistently in all contexts

Cost Recovery

+ Simple: Pay by-the-Keg

Difficult: Pay by-the-Drink
Managed services and services
on demand

» SOA fosters reuse, and reuse

means complex cost recovery
schemes.

Governance

* Business Area/System Based

« Typically, governance enabled
for projects or programs, not
the enterprise.

» Governance ‘tuned’ to the
SILO-based style of delivery.

Enterprise Based

Associative and not hierarchical
High degrees of overlap of
system development life cycle
phases

Manage autonomy
concurrence of delivery.

and

* SOA needs more formal and

complex Governance

All of the above differences in software systems engineering can be traced to two
sources:

Changes in the model that defines a SOA; that is, the characteristics of a SOA that
make it distinct from other architecture styles. To address this, the Object
Management Group (OMGQG) is establishing a UML Profile for SOA.

The need to control, execute, and manage the delivery process so that the benefits
of loose coupling, autonomous deployments, and the other features reference in
Appendix A are realized. To address this, a different way of delivery is required
that is based upon concurrent and continuous delivery, for example, use of best
practice such as Information Technology Infrastructure Library (ITIL).

Each of these, the UML Profile for SOA, and Continuous and Concurrent delivery
will now be discussed and foundations for advanced SOA adoption.

Page B -3

Establishing a UML Profile for SOA

Currently, there is no accepted standard regarding what attributes should be included
in a SOA design. Therefore the question of whether a particular design and
implementation is “good” or “bad” is often left to the individual criteria of those
charged with delivering or judging a SOA. Therefore, the lack of a consistent model
of SOA will necessarily mean that services designed by one ‘faction’ of delivery will
embody different characteristics and features than another “faction.” This has made
conjunctive integration difficult.

The Object Management Group (OMG) is currently working on a ‘UML Profile’ for
SOA that will provide an objective basis for specifying the various attributes in a
SOA design. The resultant SOA Specification will exhibit high conceptual integrity
for the initial specification, delivered software and services, and managed SOA
compliant solutions. Characteristics of this UML framework include Views and
specific UML Profiles Models for each View. Together, they represent what needs to
be done to deliver functional requirements in a SOA way. They are also used as the
basis for specifying SOA design to implementation artifacts.

Views

Architecture views are nothing new. The Department of Defense Architecture
Framework (DoDAF) is based upon a set of views. So are the Federal Enterprise
Architecture (FEA) and the Enterprise and Rational Unified Processes. What's
different is the number and the associations between views so that dynamic and
service-based deliveries can be well described.

The figure, below, describes a necessary set of architecture views as a set of
associations as opposed to, as in traditional engineering approaches, as a stack of
some sort (example: the FEA Service Model). To be successful in delivering SOA
means that many activities have to go on at the same time. For example, requirements
for both the consumer and the provider mature, and the providers are delivering new
versions of services, and autonomous deployments occur across the enterprise, etc.
To enable this concurrency across the Army enterprise, the views must be defined as
having explicit association with each other. This will then assure that effective
input/output relationships, traceability of an artifact from one view to another view,
transformation from concept to deliverable, and control of the total process can be
achieved.

Page B -4

Metadata and Semantics

—Services and
Components

FIGURE B-1
Associative Model of SOA Architecture View Set

A short description of each of the above architecture views follows—

1.

Capabilities & Requirements: Establishes measurable and modeled descriptions
of all capabilities, desirable functions, SLA’s, and constraining requirements.

Business Processes: Establishes detailed ‘stories’ and use cases. This is the basis
for featurization.

Semantics & Metadata: Describes the communal and contextual ‘facts’ that the
various products to be delivered are based upon.

Performance & TPMS: Establishes measurable and modeled ‘ilities’ that drive
implementation architecture and deployment decisions.

System Architecture Constraints: Translates the Performance and TPMS into
implementation architecture decisions: this is the place that pattern-based
decisions on how a specific feature or set of features will be implemented.

Information and Data: Uses information from Capabilities, Business Processes,
and Performance and TPM views to establish data payloads for interfaces plus
how data will be consumed and used. Includes service-oriented segmentation
rules.

Interfaces: Establishes interfaces and operations for specified products that
invoke various implementations. Promotes service-oriented ‘abstraction’ by

Page B -5

keeping interfaces and operations constant and allowing the implementation(s) to
be chosen to enable specific needs.

8. Services and Components: Establishes the component and inter-process
descriptions that will drive deployment descriptions. For example, should
component ‘A’ and ‘B’ be compiled together during design time, linked together
at build time, or use an interface registry to communicate with each other?

9. Assembly and Deployment: Establishes the model of how the products and
resultant implementations should be constructed for deployment.

Elimination of Ambiguity: The Use of UML Profiles for
Each View

Specifying that there are a number of architecture views is necessary but not
sufficient to promote a Service Marketplace. Enablement and delivery of services
have to be based upon a consistent and measurable standard. The standard should
assure the integrity of the service to production in such a way that it can be used and
reused. This level of measurable certainty is the basis for

o Making the delivery of SOA less dependent upon individuals and more upon the
specification of what represents good and bad design,

¢ Software, Information, and Mission Assurance.

Consequently, the UML Profile for specifying what a SOA is, and by extension, how
the absence or presence of any one characteristic of SOA should be addressed, is the
basis for a consistent specification of the conceptual integrity of SOA.

Below is an example of part of a UML Profile for one of the SOA views.

Page B -6

The concept has definition with

terms such as actor-owner A conceptexpressed as a UML class
(another Concept) or desirable
outcome (a specific and Capabil
A) pability .
measurable semantic) defined = Attributes of the
; wepe Eli e concept that must
in the model X‘ .| ecapabilityDescription . . P N
Definition @capabilitySubmitter <« be 'E‘CIUded ina
gcapabilityApprover design

A Capability is a discrete expression
of a desired outcome that an Actor-)
Owner wants to see in a system. Sget() Actions that mustbe
Capabilities are descriptions of . | _——— supported by the
behavior and for them to be put() <+«

® i design
unambiguous must be tangible and ’ijz:f:é{)ntext() 9

¢capabilityType : String = Function

measurable)
Z\é “— = Sometimes
Concepts
PIETes take specific
Function to e provided TeprocessName forms (eg, a
Metric, threshold, |or objective value éprocessParticipants | Capability is
‘ either a
r ; Process,
Function ? .
| wactionDescription |<— Function, or
* ption |<———— Goal)
Goal Q
Rogoalldentifier) 1.n
@goalDescription |
&goalOwner -n y\s
¢g0alApprover ometimes a concept is composed of different things (e.g., a

Function must have at least one goal)

FIGURE B-2
SOA UML Profile Snippet

Adoption of a UML Profile for SOA will ease the management, control, and
inherently chaotic delivery to production of services by providing a basis to not only
assure that continuous and concurrent delivery can occur, but that what is developed
and delivered can be effectively measured as being viable.

Continuous and Concurrent Delivery

If a UML Profile for SOA provides the conceptual integrity for how to develop and
deliver SOA solutions in a predictable and measurable way, then Continuous and
Concurrent Delivery uses the views and associated UML profiles to deliver on the
promise of a SOA Marketplace in which services are delivered to production
consistent with the operational tempo and the every-changing operating environment
of today’s Army. For example, a feature-based planning activity feeding a SPRINT'-
like delivery process can generate deliverables every 2-4 weeks across multiple
delivery teams. And, because feature-based planning is reflected in the Integrated
Master Schedule, complete transparency is achieved with all Stakeholders.

Feature Based Planning for a SOA

A feature is a single, well-formed enabled outcome. In software, it is usually
associated with a single event invoking a specific set of rules resulting in a single
post-condition state. Therefore, for a SOA, a feature is associated with the
specification of an interface and a specific operation on that interface and can be

' ‘SPRINT’ is a part of an open and agile development process called SCRUM (http://www.scrumalliance.orgy/).
SPRINTS call for delivery of features every 2 weeks to no later than 30 days. The objective is to deliver ‘inside
the requirements change cycle.’

Page B-7

http://www.scrumalliance.org/

considered the implementation of a service. Implementing a service is different from
implementing the enabling component that is used for a service.

o Features represent specific tasks of specific use cases to be performed.

o By understanding the importance of one use case over another, we can understand
the value proposition of a specific feature. This allows a more “surgical” delivery
process.

o It is easier to replan a feature than it is a tightly coupled system or subsystem.

e There are fewer dependencies between other features and on resources if planning
is performed at the feature level.

o Planning can be based on the value of individual features as opposed to tightly
bound phase deliveries.

Start 30 Days 30 Days 30 Days 30 Days

Target Sprint 1 Sprint 2 Sprint 3 Sprint 4

Arch
Evolutio

. Execute 'Build

Planned f’l.aq

SprintS/v Features = . =

Dynamically Plap Execute Build F:Ia.n._ Execute Bsu"d

Planned Sprints > [T, 011 RCHE] ‘ Foafums- < x| B
R

Nightly Builds

FIGURE B-3
Plan and Deliver by Feature

Controlling and Managing SOA Delivery by Feature

The above figure depicts the delivery by multiple autonomous delivery teams. The
problem is that this kind of delivery is easy to depict and hard to do without an
appropriate framework managing the process. The figure below depicts an example

Page B -8

of a ITIL-based process by which appropriate planning and control of all delivery,
new or maintenance driven, is managed by the same process.

Plan and Delivery by Feature — Process Control

SCD/RPO
i SCD/RPO SCD/RPO is
z CCB IDP V;"E‘I’:;e:e‘t:e - Test and Release notified of the
= approved : Validati review closure
|_ request Production alidation
A
RLSI work with
%) RLSI notified of o | RLSI Tracks the SLA team for| RLSI is notified of|
é the request the progress the specific the closure
requirements |-t el bt
| ‘]
3 Y I
[%]
o SCD request is r
o logged (Control M1 PN RoalleSHE
@ closed
o record created)
I
7}
% i
P | IS
=) h—h—
S o Change Change [
= 2 Request is - approval
%g created process —l_’ o | Release | U
S | dateisset |
5
kS, LA is
=) !
O c Service SLA support blishedll
g = Specification is > S;I;Ad:\rcenltg;);%e —1 »| strategy is — 1 M1 pulsg aend 2
% % developed developed Customer
- Y A |
= d
‘G ol Capacity
o £ | planning for the |-—
8 o S| new service
c 8
oo
ot
o § g Sprint Planning ‘ ‘ Sprint \
= =0
[0} o Backlog or Rl Release to
(0] c : Test for roduction e
£ = Desigl » Plan | | Elaboration | Construction | | ™| Releaseto |—p~ Release pdate is #] Production is
o Requirements Production " performed
] validated
]] I
——tN—r] I
c =
S c
= 0
S
© uEJ — — N1 N1 n—I Docuri Definitive
52 CMDB | 1 ibraryis fam| SOftware
&= E updated / Library is
S & updated
Q — updated
o=) 1
g — v} N——] ’
> Security is Defines Access Control
2 .
S 5 involved in [Vulnerability Requirements N\ NP De;z‘:'i;rm O?'C'f’" %‘?A ;Fg:xﬂ; | |
3 O : est wi
% E New Scrum Input to requirements roloaa SCDIRPO activities
T
=
<} 5 r
<} s}
RoE Feature Build VELGE:
O c e, i training
= o 2 Validation Validation .
= = criteria
o
> > I
T
= ¥
E Build training—» Create Prior to Frol
®© > plan training ®1 release train releasSiUSiy
(= material support staff cu;taosrzer

FIGURE B-4
Planning and control of a SOA-based Concurrent and continuous delivery (example)

Delivering Individual Sprints

Finally, within the overall ITIL-framework for continuous and concurrent SOA-
based delivery are the specific details of the engineering delivery team. Depicted in
the figure below is a typical feature driven delivery process.

Page B-9

Target Architecture
Evolution & Feature Feature
Specification Allocation and
IMS_Planning

Updated
. Implementation &
Implementation Fianlize and Target

Architecture approve allocation P
X to SPRINT Archiectures

Electronic
“Product” model
of the IDP

4

Feature Backlog il
o
s}
o
E SCRUM 1 SPRINT (30 Days)
© ¢ .
0 Execute Build
I 1 =/ Feature 1
» o c |l e 5 . i
“5’ 1. %, 5|8 2 g < Build
Sllollle S8 1&T]2 T
o8B oL @ 5] £
L clllg || = o kel = eature
o NENE 3 5 Build
= .. [0}
2 o g = 312 IR ut 1 ul] Testfor
!CTJ £ gl & £lE 2 Ss|218]] e 2 Release
c] o)) Sl E o SO|2]R =3 kel
Q i £ Sll=gec > & eature =l =
= n 5 S RS € ellell2]|w Build 2|5
D © S| 3 ||o TS
c = Ul ol|la 2llBlloll2 = <]
W o|l|=sl]|= oo |3, 215l &)l 1|0
c) (e o Q| S &’ c =
HARES sitePalfellsllSle =
[} X @ || =
218 SHEIISTIZICIE|E
AR E|E| a3 5]
° 2 £
El]|e ENE|I =112 5}
E||® sl |£]|5 =
€ 2 T || e 5 2 €
S8 glle s | £ £ Feature n
8 Build L
c =
S
g 5 CMDB CMDB DSL
£ g Baseline updated updated
o=

FIGURE B-5
The Engineering of a Specific Sprint

Page B -10

APPENDIX C —

SOA Security and Information
Assurance

Introduction

Assurance, in general, measures the degree of confidence in the trustworthiness of an
entity in some system context. 7Trust is established based upon sufficient and credible
evidence leading to belief that the entity in some system context satisfies the
specified requirements. With that a basis,

Information Assurance refers to the ability to access and defend information and
preserve the quality and security of that information. This involves measuring
and assuring information availability, integrity, authentication, confidentiality,
and non-repudiation. It also includes providing for restoration of information
systems by incorporating protection, detection, and reaction capabilities.

The above definition was based upon the published definition of Information
Assurance by the Information Assurance Directorate of the NSA.

The Problems SOA Introduces

It would be tempting to simply adopt the above definition for SOA, but the problem
is that SOA adds a couple of things that strike at the foundation assurance, therefore
at the foundation of information assurance.

What are the requirements?

A foundational tenet of assurance is that there are requirements that can be tested and
that confidence and trust in the satisfaction of those requirements can be built in and
measured as having been satisfied. What, exactly, are the requirements for a SOA?

o The ones that existed when a service was built and delivered?, or

e The ones used to decide that it should be reused in an unplanned for process or
function months or years after delivery?

Services are initially defined and deployed based on as set of requirements. In
traditional systems those requirements control the usage of the software. But for SOA
where services can be selected for usage days, weeks, months years after initial
deployment there is no control over whether or not the user’s requirements are
consistent with the requirements that drove the service enablement.

What is the system?

Another foundational tenet is that requirements are satisfied in the context of a
specific system. What, exactly, is a System in a SOA environment? Since a
foundational design tenet of SOA is that systems are dynamic and determined during

Page C -1

execution, then what is the credible evidence that a constantly forming and reforming
‘vector’ of services in response to specific events is assuring “... availability,
integrity, authentication, confidentiality, and non-repudiation and that it is providing
for restoration of information systems by incorporating protection, detection, and
reaction capabilities”™?

With this as a backdrop, this appendix explores SOA Security and [A. Specifically, it
explores:

o The Impact of SOA on Security and Assurance. This subsection establishes a
discrete basis for the differences to be accommodated in a SOA IA strategy

o Extending the SOA UML Profile for Security. This subsection discusses
extending the SOA UML Profile overviewed in Appendix B to include security
and assurance parametrics and models.

e SOA Security and Assurance Methodology Impacts. This subsection discusses
the impact of SOA Security and Assurance on a SOA methodology. If the essence
of SOA is dynamic and conjunctive composition, what are the impacts on a SOA
methodology that has to assure that Security and Assurance are built in?

The Impact of SOA on Security and
Assurance

Appendix A described specific features necessary for enabling dynamic but secure
integration of disparate services in both planned and unplanned ways. This section
examines the Security and IA Challenge that results from enabling each SOA feature.

Impact of Dynamic Architecture Features on Security
and IA

The enabling of features necessary for Dynamic Architectures challenges the nature
of a systems context. Since a “system” is a dynamic composition of services derived
during execution regarding both the class of a service to be chosen as well as the
specific instance of that class to be invoked, this results in the foundational
question—

What metric or monitoring can provide an indication of how well I'm
securing the SOA?

Further, each feature described in appendix B results in its own set of IA challenge to
providing a secure and information assured environment

Page C -2

TABLE C-1. Dynamic Architecture Security and IA Challenges

Feature

Security and IA Challenges

Late binding

Processes are formed dynamically therefore never completely sure what services will participate

Loose coupling

Loose coupling desirable for good software design, but tight coupling may be necessary for maximum
performance. Finding the right balance is important.

Discrete functions

Designing for reuse of independent methods requires additional attention and care.

What references can be used to certify and accredit SOA services before they are added to ensure
adequate security has been addressed?

Service Discovery

Varied techniques offered and planned for, such as: directory services, service brokers, service auctions,
service policies, and Quality of Service (QoS) criteria, including reliability, performance, availability, and
trustworthiness.

Autonomous
deployment

Component “hot swap” requires sophisticated software and hardware design that does plug-and-play.

Message-Based
Integration

Focused on correlating simple and complex relationships of events based on past trends and future
predictions. Must react to new, external input arriving at unpredictable times.
How will data encryption be handled in the service-oriented architecture?

Independent and
implementation-
neutral

Avoiding implementation pitfalls and good practices for a clean separation of concerns

Coarse grained
components

Requires proper domain analysis of business processing and ontology.

Dynamic service
collaborations

Orchestrate and “team” software processes to solve problems collaboratively or compete intelligently.
How will SOA security 'fail over' for those services that don't/can't react to the SOA paradigm?

Synchronous,
asynchronous, and
publish-subscribe
interactions

Processes are formed dynamically therefore never completely sure what services will participate.

By creating a combination of services at run time based on consumer requests, the
system can form topologies not specifically planned at design time.

Impact of Conjunctive Composition

The enabling of features necessary for Conjunctive Composition challenges the
nature of a requirements base for SOA delivery — which requirements, the ones at
time of initial SOA delivery, or those used at the time of conjunctive composition,
should be used as the basis for measuring assurance and trustworthiness? Each
feature results in a challenge to providing a secure and information assured
environment,

Page C -3

TABLE C-2. Conjunctive Composition Security and IA Challenges

Feature

Security and IA Challenges

Service contracts

Designing and defining voluntary agreements that mutually bind the participants to authorizations,
obligations, and modes of interaction.

Dynamic Process

Determining the value proposition for the consumer and then identifying and assembling services that

Formation will form a virtual service for the end consumer.
Composite
services + Centralized reuse repository and effective reuse management

Application-neutral
design

Proper domain analysis, and good ontology specification and management

Consumer and
Provider Metadata

Proper domain analysis, and good ontology specification and management
How will the metadata attributes attached to a service be inseparable from the service?

Concurrently
developed

Application context in the metadata, not the software component — how do you authenticate and
authorize to Metadata?

Interoperable
across a
heterogeneous
environment

What represents the correct information context?

How do you assure a consistent specification of information assurance across different environments
and different stakeholders?

What does a cross-domain service require of another service to accomplish information sharing across
domains?

How will the transformation be handled? Specifically, how to manage and secure a GIG which is
evolving and only partially SOA-compliant?

Reusable artifacts

Centralized reuse repository and effective reuse management

Network
addressability

If services can be pulled from "anywhere', how do we restrict service requests to only pull ‘approved'
service for the data sensitivity level?

Additional SOA Impacts

SOA impacts different areas with regard to security. The following highlights
relevant questions for each area:

Impact of SOA on Roles and Responsibilities

o What will the service provider, the infrastructure, and the client be responsible for
providing to secure the SOA?

e How roles of service consumers with services are adjudicate?

o How are permissions assigned at run time?

Impact of SOA on Threats and Threat Specifications

Table C-3 illustrates how the threat model is extended to accommodate SOA TA
threats. Here are some questions:

o What specific threats are introduced by the addition of a SOA architecture and
what are the specific services and protection points to address those threats?

o How should the system respond with denial of rejected requests?

Page C -4

TABLE C-3. Extending the Threat Model to accommodate SOA IA Threats

Threats

Services

1 User Impersonation
Service Impersonation
User exceeding assigned authorization

« User Identification
« User Authentication
« User Authorization

9 | Undesired Use of an Object Implementation
Request/Response Repudiation
Disclosure of “Eyes-only” data

« Application-Layer Access Control
+ Non-Repudiation

+ Security Audit Logging

« Data Protection

3 Unprotected Security-Unaware Applications
Unwanted Revelation of Client Machine Existence

+ Client-side Object Invocation Access Control
+ Data Protection

4 Object Masquerade

Client Masquerade

Object Mis-use of User Authorizations

IOR tampering

Disclosure of Request Contents
Modification/Destruction of Request Contents

« Authentication Between Client and Object
« Encryption Between Client and Object

+ Delegation Controls

+ Security Audit Logging

5 Network Eavesdropping
Message Tampering
Inability to cross network boundaries (e.g., firewalls)

» Transport Encryption
« |IOP Traversal of Firewalls

6 Unprotected Security-Unaware Applications
Too many object interfaces and implementations to manage individually

« Server-side Object Invocation Access Control
« Security Policy Domains

7 Unauthorized Disclosure of Specific Information to Client
Request/Response Repudiation
Protection of “Eyes-only” data

+ Application-Layer Access Control
* Non-Repudiation

+ Security Audit Logging

+ Data Protection

8 Message Content validation
Message identity guarantee
Is the message from a ‘live’ and valid service?

Impact of SOA on Protection Points

o How will authorizations be applied when authorization repositories must be

accessed across domains?

o How will the service repository be “self protecting”? What are the requirements
for the repository? (Is it higher than the resulting network?)

e Service requestors (consumers of a service) can be end users or other Components
or services. How do you assure the identity of the service requestor?

o Is the Service Registry the intermediary that must (a) determine whether a request
can be satisfied for a service based upon the security profile of the service
requestor and the security level(s) of the possible services, and (b) are multiple
security levels of a requested service available to satisty the requests of multiple

levels of security for service requestors?

Page C -5

Impact of SOA on Physical Environment

o What has to be added to the physical environment to ensure SOA security, given
the above?

o What can be reused, maybe with additions or adjustments, in the physical
environment to ensure SOA security, given the above?

e How will SOAs perform in areas of limited bandwidth? (front line, wireless, dial
up, etc)

Impact of SOA on Situational Awareness

Situational awareness, in a systems context, is the capability to determine at run time
if the combination of requests and peer services is a permissible combination in view
of security restrictions. This assumes that the system will apply a set of rules at
service request time that derive from the nature of the requests. The system may
respond by providing more limited access to specific services than requested. There
are issues are how to notify the requestor and how to avoid breakage.

o How will we maintain Situational Awareness of SOA functionality and
performance?

o What contributes at any one point in time to the services that represent a particular
situational context?

Extending the SOA UML Profile for Security

In Appendix B a UML profile for effective and consistent description of a SOA was
overviewed. As currently specified, this profile will accurately describe in a
measurable way the dynamic and conjunctive characteristics of a SOA delivery, but
not the specifications necessary to describe a secure and assured solution.

However, a companion effort is underway that will extend — that is, add new
components to the SOA UML Profile — and specialize — that is, add attributes and
methods to existing profile classes — so that security and assurance characteristics are
accommodated. Figure C-1, below, contains a snippet of part of the SOA UML
Profile describing the relationship of a service — a well scoped and specifically
defined outcome — to the mechanism that enables the service: an interface. It also
describes a relationship to the Community of Interest that would subscribe to the
service and use the Interface. A specialization of this part of the SOA UML Profile
would be to add necessary attributes to SERVICE and INTERFACE to accommodate
security contexts. An extension to this part of the SOA UML Profile would add a
parametric model on the association between SERVICE and INTERFACE and
SERVICE and COMMUNITY of INTEREST to describe how these relationships are
situationally authorized.

Page C -6

+Contract Offers| 1.n

Capability]:Jm‘e
o Sapebiliites avd Regueme it Mo

+Desirable Outcome [T

Capa iltie 5 3 swigned i
e ToRTEs for delivery

+Flanined

+Furded Delivery Source jeome Ad d :
oser\riceHa:f:ﬂce Pa rametnc
; +;.°|:::J:f Software Sendces i:E\riceStatus Car be Ci\? MOdeI
FrTp— 4 mfemane speciicabions 076 geerviceSubmitter [0 Sid 1hi
i ———— T T s (o] OSOTONG
geanvicebarsion Effectivity Data
erviceType H H
Boes inplene o +Something that can s & 7re|atI0nShlpS

authorized

Specification

Evposedirterfaces

AT

Service

_ADD:

/

Interfaces

Interface

Service Community of Interest
o Ik race Rekeice Mk}

Boommunity Mame : String

(Mo Ve race Rekreice Mokl

Wednterface Name ; String
ginterface Operationshdctor ; C
Bhirterface Description

ion hianager

+Hegisterad

Instances have
UUIDs as well as

Becommunity Type : Single = Static : ! Entry 0. i
rterface IUID : Stri

Beommunitybember : Collection hanager Q?' Shase ing +Catalog reQIStered
Bepriviedges BhinterfaceType runtime

? i) |nterfaces.

BGat Operation()
+|-s‘3'el':uﬁi2;27| ®Get DataPayload)
FIGURE C-1

Extending the SOA UML Profile to Address Security and Assurance

The implication of this is that all of the impacts on security and assurance resulting
from a SOA design to delivery implementation overviewed in the previous section
would be resolved into to the SOA UML Profile.

SOA IA Methodology Impacts

The SOA Software Engineering Process will naturally accommodate security and
assurance conceptual integrity along with all the other classes and associations used
to accurately describe a SOA by:

1. Adding security and assurance extensions and specializations to a SOA UML
Profile, and

2. Incorporating the SOA UML Profile into the Methodology used for SOA solution
delivery

In other words, security and assurance are just another set of characteristics that must
be accommodated and the long desired for ‘security must be designed-in and not
pasted-on’ is now realized.

Conclusion

e SOA adds a number of new features change the nature of systems delivery.

o These additional characteristics results in a significant impact on the foundations
of software systems engineering.

Page C -7

Using a method and process that is Service aware, such as Feature Driven
Development coupled with SCRUM-based processes will accommodate these
new features.

Further, these features can be well described and used as a basis for deriving a
UML Profile that accurately and consistently describes SOA in a measurable way.
This will improve the accuracy, consistency, and interoperability of Service-based
solutions.

But unfortunately, the features of SOA results in the introduction of a number of
new threats and systemic characteristics that challenges the traditional approach to
security and assurance.

However, by effective description of these threats and characteristics, they can be
added to a SOA UML Profile so that—

* Tool vendors can build tools to accommodate not just the specification and
delivery of SOA, but the security and assurance characteristics as well.

= Service providers and provide solutions that are consistent with the integrate
specification thereby improving interoperability and conjunctive
composition. And reuse is improved as well.

= Methodologies that assume a SOA UML Profile and are derived from the
features noted above will naturally accommodate security and assurance
issues.

Page C -8

